|
In mathematics, Krawtchouk matrices are matrices whose entries are values of Krawtchouk polynomials at nonnegative integer points.〔N. Bose, “Digital Filters: Theory and Applications” (Elsevier, N.Y., 1985 )〕 〔(P. Feinsilver, J. Kocik: Krawtchouk polynomials and Krawtchouk matrices, ''Recent advances in applied probability'', Springer-Verlag, October, 2004 )〕 The Krawtchouk matrix ''K(N)'' is an ''(N+1)×(N+1)'' matrix. Here are the first few examples: In general, for positive integer , the entries are given via the generating function : where the row and column indices and run from to . These Krawtchouk polynomials are orthogonal with respect to symmetric binomial distributions, .〔(Hahn Class: Definitions )〕 ==See also== *Square matrix 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Krawtchouk matrices」の詳細全文を読む スポンサード リンク
|